

Building Solid State NMR Probes

Peter Gor'kov

NHMFL

Workshop sponsored by National Resource for Advanced NMR Technology NIH P41 GM122698

Sample coil

MAS spinner in SS NMR probe

- Examples of multi-resonance matching networks
- Electrical balancing of sample coil and why we do it
- Optimization of channel isolation traps
- ¹H-detection probes
- Cross-coils
- Probes for direct detection

Start from highest frequency ¹H channel

Parallel tank circuit L_S - C_{HT} generate large current I in the coil and B_1 field inside sample Additional component "matches" circuit impedance to that of 50 Ω spectrometer cable

 $C_{HM} >> C_{HT} \rightarrow V (C_{HM})$ is low 1 high-voltage trimmer Smaller footprint Tunes slightly higher

 $=\frac{C_{HT}+C_{HM}}{L_s C_{HT} C_{HM}}$

 $V_{max} = \omega L_S I$

CHT

Снм=

 ^{1}H

Cross-Hester-Waugh matching network – very common High and low-frequency inputs are on opposite ends of the coil Relies on $\omega_X^2 < \omega_H^2$ so that $C_{XT} >> C_{HT}$ becomes path to ground for ¹H signal Resonant trap Z_H adds path to ground for low X frequency while reflecting ¹H signal

 $^{1}H/X$ probe RF circuit. Colors show ^{1}H and X signal paths or their mix.

Examples of $Z_{\rm H}$ are parallel *L*-*C* trap or $\lambda_{\rm H}/4$ coaxial resonator shorted at one end Any ¹H signal still leaking into X port is removed by low-voltage *series* trap L_2 - C_2

Addition of 3^{rd} channel Y is done in the similar manner Reflection trap Z_X is added to isolate X signal from Y-channel circuit Optional trap Z_Y prevents adjustment of Y channel by X trimmers

4th resonance can be added accordingly

Isolation traps introduce additional RF losses in the circuit

Each additional channel = more isolation traps = probe sensitivity inevitably takes a hit

Generic 3-resonance ¹H/X/Y probe RF circuit, *unbalanced*

Balancing sample coil – high fields large samples

2022 NRANT Probe Workshop NIH GM122698

When coil length approaches $\lambda_H/4$

Coil becomes transmission line with standing waves of V, I B_1 becomes non-uniform, skewed to grounded coil end $l \approx \lambda_H/4$ is tuning limit of such circuit COIL BALANCING ungrounds coil with balance capacitor C_{HB} Circuit tuning limit increases to $l \approx \lambda_H/2$ Standing waves and B₁ field profile regains symmetry Maximum voltage across circuit is 2X smaller

Add second ¹H trap Z_{H2} to redirect ¹H signal to ground via balancing chip C_{HB}

Current symmetry condition $V_A = -V_B = \frac{1}{2}V_S(\omega_H)$ is when coil ends see equal impedance to ground: $C_{HB} \approx C_{HT} + C_{HM}$ Voltage node forms on the coil – locate to verify

Balancing coil at ¹H frequency improves B₁ field homogeneity ¹H voltages amplitudes are 2X smaller – less arcing risk Balancing coil at lowest Y frequency is done by adjusting C_{YB} chip – less arcing risk Balancing at middle frequency X is not simple

3-resonance ¹H/X/Y RF circuit balanced at ¹H and Y frequencies

Balancing sample coil – effect on trap loss

2022 NRANT Probe Workshop NIH GM122698

Each isolation trap has inherent loss due to internal resonant currents

Will adding 2nd balancing trap Z_{H2} make ¹H circuit less efficient?

¹H-signal loop in *unbalanced* circuit

Assume traps Z_{H1} and Z_{H2} have similar losses at ¹H frequency: $Re(Z_{H1}) \approx Re(Z_{H2}) = R$

¹H-signal loop in *balanced* circuit

Balancing ¹H channel with 2nd lossy element actually improves its sensitivity NMR probes made for ¹H-detection better have balanced sample coil!

Balancing sample coil

- Talk about balancing means little unless voltage balance conditions are checked with grounded wire probe!
- Spare cover with holes in strategic places can help with location of ground nodes on the coil and with ball shift measurements
- Touching sample coil at the location of virtual ground node with a grounded wire probe produces no shift in resonance
- Ideally your ground node will be on the middle turn of the sample coil

Coaxial trap optimization

Signal loss is lower when trap overall size is larger

Smaller g reduces trap loss at low-frequency at expense of higher ¹H losses

¹H-detection probes must have ¹H coaxial traps with g = 9.2: $Z_0 = 90 \Omega$ for Teflon or $Z_0 = 133 \Omega$ for air dielectric

¹H-Detect MAS probes

800 MHz – 1.3 mm 60+ kHz

Advantages over Bruker HCN probe:

Tunable across wide isotope range ¹HXY: ¹⁰³Rh, ³⁹K, ¹⁴N, ³⁵Cl...¹³C...³¹P (all but ¹⁹F) Materials + Biosolids 40-60% more ¹H S/N than in Bruker probe Cools sample to 0°C Homebuilt 1.3 mm spinner (W. Mao) Easier to service in event of rotor crash Will save \$\$ over time

In-house spinner parts

tunable across periodic table

800 MHz – Ultrafast 100 kHz

0.75 mm JEOL spinner Circuit optimizes ¹H detection sensitivity 2X ¹H efficiency of commercial JEOL probe Wide range of ¹HXY isotopes ²⁵Mg...³¹P

¹H-detected 3-dim ¹H-¹³C-¹⁷O correlation spectra of N-Ac-VL, 18.8 T, 90 kHz MAS. Sample courtesy of Robert Griffin and Eric Keeler (MIT and NYSBC).

Direct detection probes

Double-CP experiments in biological samples

- Up to 900 MHz 1.5 GHz
- Triple-resonance ¹H/X/Y (+²H lock?)
- No sample heating from high power decoupling as in scroll or LGR
- Best sensitivity of detection channel X (or Y) as in solenoids
- Highest possible B_1 field homogeneity for CP like in scroll or LGR
- Easy switch between different X and Y nuclei as in Varian probes
 e.g. ¹³C/¹⁵N, ¹³C/²H, ³¹P/¹³C, ³¹P/¹⁵N....
- Optimize sensitivity either for X or Y detection
- Decent sample volume e.g. 3.2 mm rotors

Two sample coils

¹H LGR outside

- Low ¹H E field no decoupling heating in sample
- > No ¹H wavelength effects in LGR homogeneous B_1
- Tunable to higher fields and/or larger samples

X/Y detection solenoid inside

- Solenoid can have more turns
- Natural orthogonal isolation of ¹H signal
- > No ¹H isolation traps to worry about
- Sensitivity boost for mid- and low-gamma detection

We call it *Low-E*, others – *loE* or *MAGiC*

Bruker calls it *EFREE* [™] – non-exclusive license from FSU *EFREE* = "Electric Field Reduced, Efficiency Enhanced"

Doty Scientific recently adapted similar design as **BMAX**[™] Check another cross-coil design by Doty called **HMAX**[™]

3.2 mm MAS sample coils (1st generation) 900 MHz

Large 500 µL coils for oriented protein samples 600-900 MHz Gor'kov et al., JMR 2007

B₁ field homogeneity

Rotor and spinner design considerations

- We custom-design spinners around coils
- Coils around full available rotor volume
- \succ Emphasis on homogeneous B_1 over max volume
- Detection coil has variable pitch

Nutation decay across full sample volume: (from <u>900 MHz</u> ¹H/¹³C/¹⁵N probe) ¹H 810°/90° = 95% ¹³C 810°/90° = 88% ¹⁵N 810°/90° = 82%

> << Simulated B₁ ¹H and X=¹³C 600 MHz 1st generation LGR White rectangle is sample outline Value in center = StD of B₁ across sample volume

B₁ field homogeneity

Comparing to other probes using 3.2 mm Pencil rotor

NHMFL Low-E 1st gen. Agilent T3 Balun Agilent **T3** Scroll

Simulated B_1 profiles at ¹H and ¹³C frequencies, $B_0 = 600$ MHz. White rectangle is sample outline in 3.2 mm 36 µL pencil rotor. Center value = StD of B_1 across sample.

Direct detection pros and cons:

- Best power efficiency at X/Y frequencies \checkmark
- Good B_1 homogeneity and CP transfer \checkmark

- ✓ Good power efficiency at X/Y frequencies
- ? Bad B₁ homogeneity and CP transfer

- Poor power efficiency at X/Y frequencies ?
- ✓ Good B_1 homogeneity and CP transfer
- Detunes easily at high powers ?

Non-conservative $\mathbb{P}E_1 \neq 0$ field is B_1 -induced Conservative $\mathbb{P}E_C = 0$ field is electrostatic In solenoid $E_C \sim \omega LI / length \gg E_1$ High E_C / B_1 ratio heats bio samples LGR has lower E_C / B_1 ratio Inner solenoid is partial Faraday shield

Heat absorption in conductive samples, per $(\omega_1/2\pi)^2$

$$q_{HEAT} = \left(\frac{Q_{NL}}{Q_{BIO}} - 1\right) \cdot \frac{P_{INPUT}}{f_1^2}$$

 $Q_{\it NL}$ and $Q_{\it BIO}$ = probe Q's with non-lossy and biological samples

NaCl saline concentration, mM

3-resonance ¹H–X–Y circuit

With Low-E cross coils

- ¹H channel is separate 1-resonance circuit
- Solenoid is double-tuned to X/Y, resonated above ω_X
- Isolation from ¹H to X/Y is 30...50 dB
- Electrically balanced on all 3 channels
- Middle channel X is easy to balance
- Balancing is typically done to reduce voltages (arcing)
- Allows us to use smaller tuning trimmers

Note that

- Most folks would not balance middle channel X
- Because balancing X requires extra resonant trap
- Which is believed to add extra loss...
- Here the effect is opposite!

Balanced detection channel = more S/N

Cost of Adding 3rd channel Y

> Balancing middle detection channel X with additional lossy trap = higher S/N, counterintuitively

Optimize *L-C* trap for ¹³C detection

Signal loss in isolation traps varies on *geometry*

Loss in *L*-*C* reflection trap at ¹³C detection freq-cy ω_{χ} :

$$P_{loss}(\omega_X) = \frac{V^2}{Re \, Z \,(\omega_X)} \qquad Re \, Z \,(\omega_X) = \omega_X LQ$$

Goal is to maximize LQMeasure trap impedances LQ – not just trap QWe use traps with $Re Z (\omega_X) \ge 50 \text{ k}\Omega^*$

Chip capacitor *orientation* matters:

• Eddy currents in chip plates reduce trap $oldsymbol{Q}$

Physical boundaries constraints:

• Rectangular trap section increases L —

¹⁵N loss constraint = same wire length and dia:

• Shorter aspect ratio l_1/D_1 increases LQ

3D printed Cu traps

Trap inductor aspect ratio l_1/D_1

"LEGO" probe frame for WB magnets

- \geq Designed for quick replacement of every component, "LEGO" style
- C-size NPO chips with silver terminal plates
- \geq Quickly switch X and Y isotopes:
 - $X/Y = {}^{13}C/{}^{15}N, {}^{13}C/{}^{2}H, {}^{31}P/{}^{13}C, {}^{31}P/{}^{15}N \dots$
- Chose optimal isolation trap geometry for \succ X detection
 - Y detection
- Choice of 2-resonance mode \geq

Caps and shorts

X optimized trap

Y optimized trap

NIH GM122698

3-resonance RF circuit layout

Tune cards for smaller magnet bores

830 MHz

Inspired by SIM card mechanics found in older cell phones Two cards slide into the probe to set desired **X** and **Y** isotopes Trap geometry is varied to **optimize S/N** for detection in **X** or **Y** channels Cards are made of low-loss microwave substrate

Most RF circuitry is mounted on cards except for tune and match trimmers

Smarter RF circuit layout removes bulky high voltage components while maintaining power handling

830 MHz bore size = **31** mm

Making ¹H LGR for 1.5 GHz

Challenges

- × RF loss in ceramic chips increases with ¹H frequency
- × Degrades ¹H power efficiency
- × May overheat, detune, crack during long decoupling

Advances in high-power non-magnetic chips

 $\Delta \min$

- ✓ New low-loss ceramic chips since 2017
- ✓ Parallelizing chips reduces overheating
- ✓ Route spinner exhaust gases to cool LGR chips
- ✓ Use NPO temperature-compensated ceramic

Spinner **exhaust** is designed to flow gas around LGR chips

Need new detection coils \geq 1.2 GHz

3.2 mm is large volume coil for 1.2 and 1.5 GHz Circuit voltage \mathbb{B}_0 for same nutation rate At 1.5 GHz $f(^{13}C) = 377$ MHz ! Hard to tune $^{13}C...^{11}B$ range without reduction in S/N Sample dielectric loss at detection frequency

Reverse-wound solenoid + LGR

- \checkmark Same B_1 field profile as in straight solenoid
- ✓ Lower inductance
- ✓ Higher B_1 without arcing
- \checkmark Lower electric field
- ✓ Better sensitivity for $\omega_{\chi} \ge {}^{13}C...$ (mid- γ)
- ✓ 25% more S/N in biological samples
- ✓ Higher RF fields

21

Winding direction reverses in the middle End turns are soldered to each other

1.5 GHz 3.2 mm ¹HX *middle-gamma* MAS probe Materials + Biosolids

Additional Comments:

Above 1 GHz, we need new RF detection coils to overcome several problems.

Voltage in RF circuit grows linearly with B_0 field. At 1.5 GHz arcing is a cause of insufficient decoupling in probes with larger samples like 3.2 mm.

Also, many interesting nuclei reside in 300-500 MHz range. Using conventional solenoid to detect at these frequencies can adversely affect sensitivity even when cross-coil designs are utilized.

Instead, for detection, we use reverse-wound solenoid with same B1 distribution as in normal solenoid, only its winding direction is reversed in the middle while its ends are joined.

Such coil has much lower inductance and can reach higher B_1 field without arcing.

In biological experiments on lossy samples such coil can be 25% more sensitive than normal solenoid.

The loop-gap resonator responsible for ¹H decoupling was also redesigned to withstand higher voltages. We now safely reach at least 82 kHz decoupling at 1.5 GHz field.

(last slide) Thank you!