

Metabolic Modelling

Relative fluxes can be obtained using the ¹³C enrichment values from ¹H spectra (**Fig. 1**) and peak ratios from ¹³C spectra (**Fig. 2**) and incorporating these measures in appropriate metabolic models. The authors use tcaCALC (*1*) for fitting the peak ratios to appropriate models. The program tcaCALC is freely available through the <u>UT Southwestern P41 research resource funded web site</u>. As with all modeling paradigms, superior signal-to-noise ratio (SNR) data will produce more reproducible and accurate estimates of the metabolic variables. If the researcher wants to use labeling schemes other than those suggested above, they should also download the tcaSIM package, which allows simulations of the expected spectra assuming a given substrate mix. This effort is worthwhile, as repeated simulations can help generate a "feel" for the expected results based on the driving hypothesis about substrate selection.

In several cases, providing ¹³C enrichment values to the model yields better results. This value can be obtained from the ¹H spectrum of the same extract. The ratio of ¹³C satellites (indicated as A_s in **Fig. 1**) to central peak (indicated as A in **Fig. 1**) provides the absolute ¹³C enrichment.

Figure 1: ¹*H* spectrum showing ¹³*C* enrichment in C-3 position of lactate indicated as A. ¹³*C* satellites of lactate are indicated as A_s. Also present in the region of the spectrum are threonine (B) and other unknown resonances (*). The importance of good lineshapes in ¹*H* spectra to estimate ¹³*C* enrichment from ¹*H* spectra accurately can be seen from the small difference in chemical shift between lactate and threonine.

Figure 2: ¹³C spectrum showing C-4 glutamate fitted to a mixed Gaussian-Lorentzian line shape. NMR spectra (black) and sum of fits (purple) are shifted vertically for clarity. Peaks are fit simultaneously constrained only for the chemical shifts. Peak intensity and linewidth of the peaks are allowed to vary during fitting and residuals are minimized.

<u>Refs</u>

1. Sherry AD, Jeffrey FMH, and Malloy CR (2004) Analytical solutions for ¹³C isotopomer analysis of complex metabolic conditions: substrate oxidation, multiple pyruvate cycles, and gluconeogenesis. Metab Eng 6:12–24