

Initial SCH Bio Science

Supported by NSF DMR through the Magnet Lab and

through the MRI Program

Also supported by an NIGMS National Resource Grant

Joana Paulino, Zhehong Gan, Ivan Hung, Kyle Chen, Tim Cross

FLORIDA STATE UNIVERSITY

SCH Operational Experience

- SCH Operations
 - ramp up & ramp down time: ~ 30 min each
 - set up activities on Monday often 2-3 hours of magnet time available in late afternoon
 - Tuesday through Friday
 - ramp up at 6:00 AM science staff must be in cell by 5:45 AM
 - ramp down at ~3:30 PM
 - magnet trips from field on average twice a week, sometime twice in a day
 costing 1.5 hours
 - magnet needs to be ramped down to mid field to change samples if no ferro shims used. If ferro shims used ramp down to zero field to change samples.
 - typically 5-7 hours at field per day.
 - Good week is 24-30 hours at field

SCH 2018 Operations

- SCH Operations
 - 2018 Schedule: the 52 weeks
 - 7 weeks scheduled for deep maintenance no ops
 - 5 weeks for additional maintenance
 - 1 week for Christmas
 - 8 weeks scheduled for CMP
 - 31 weeks scheduled for NMR
 - 4 weeks lost to emergency maintenance
 - 2 weeks were lost as individual days for infrastructure
 - Operations at field during a good week
 - ~ 2 hours: Monday
 - ~ 5-7 hours: Tuesday Friday
 - ~ 26 hour of SCH NMR Operations for a average good week
 - **650 hours at field for the year** (31-6 weeks) x 26) assuming no additional lost weeks we will be close to this number.

650 hours is equivalent to less than 1 month of time on a supercon magnet.

SCH Operational Costs are Considerable

- SCH DC Power
 - 14 MWatts to power the magnet
 - additional MWatts to run the chillers and pumps to cool the magnet
 - \$17,000 for a week of SCH time
- Operational Staff for the power supplies, chillers, cryogenic system,
 - Operational Staff for the cryogenic system
 - a minimum of 3 personnel fortunately shared with a second magnet during regular weekly operations
- Scientists/Engineers
 - A minimum of 2
 - more typically an average of 3
 - in the future this maybe more typically 2
 - The engineering effort away from SCH magnet continues in the the RF group
- Power is approximately half of the operating cost
- Consequently, each hour is valuable and a great deal of thought and planning must go into each day of operation

Droserasin 1 Plant Specific-Insert in Lipids

Data acquired in SCH at 1.5 GHz ¹H RF – 100 kHz ¹³C RF – DARR 80kHz/ INEPT 50 kHz

Rachel Martin, UC Irvine - shown with permission

GB1 250 ms DARR 1.5 GHz Cascade Field Regulation

EmrE Aligned in Bicelles at 33°C

EmrE – Nate Traseeth NYU – shown with permission

Chemical Shift Dimension comparison EmrE

Series Connected Hybrid Magnet – MAS Spectra of Uniform ¹³C, ¹⁵N and 70% ¹⁷O N-Acetyl Val-Leu in 2.0 mm MAS HXY Probe

2D ¹³C-¹⁷O Spectra at 21T in a supercon Magnet - soon to be implemented at 35.2 T

- 2D ¹⁷O Triple Quantum MAS spectra at 35.2T and 19kHz spin rate.
- Quadrupolar interaction is not completely eliminated by MAS
- Signal averaging time is reduced by a factor of ~10 compared to 21 T

Keeler et al., (2017) JACS 139, 17953

Gramicidin A – The First All-Atom Transmembrane Structure to be Characterized in a Liquid Crystalline Lipid Bilayer Environment

- An alternating sequence of L and D amino acids Forming a β -strand with all sidechains on one side forcing a helical structure
- All of the spectroscopy suggests a symmetric dimer

Ketchem et al., Science 1993; Ketchem et al., Structure, 1997

Enhanced Alignment of Gly₂, Ala₃ ¹⁵N Labeled Gramicidin A in Liquid Crystalline Lipid Bilayers – Oriented Sample ssNMR:

Gan et al., (2017) JMR 284:125-136

Leu₁₀ ¹⁷O Gramicidin A Aligned Parallel to DMPC Bilayer Normal and to Bo: OS ssNMR

Leu₁₀ ¹⁷O Gramicidin A Aligned Parallel to DMPC Bilayer Normal: OS ssNMR

Leu₁₀ ¹⁷O Gramicidin A Aligned Parallel to DMPC Bilayer Normal: OS ssNMR Natural Abundance ¹⁷O

¹⁷O Gramicidin A Aligned in Liquid Crystalline Lipid Bilayers:

Gramicidin High Resolution Structure, 1MAG

Distribution of Carbonyl Oxygen Atoms in the Symmetric Gramicidin A Dimer

Distribution of Carbonyl oxygen sites based on an MD simulation in the pore – very stable structure – very symmetric

Waters in the Gramicidin Pore

- Gramicidin A Single File Column of Water Molecules modeled by MD
- 7 or 8 Ordered Waters Molecules form Electric Dipole Moment
- According to MD Simulations: Water Wire Reorients on the sub-ns Timescale
- ssNMR resonances shows stability on sub-ms Timescale – 6 orders of magnitude difference
- Is it the electric dipole of the water wire that induces 4.0 kHz shift?

Selective Hydrogen Bonding Explains the Different Chemical Shifts

 Same MD Snapshot in two orientations showing one Gly2 carbonyl with an H-bond and the other without an H-bond

> Gly2 Carbonyl Oxygen No H-bnd

1MAG

¹⁷O Gramicidin A with Double Occupancy K⁺

- All data obtained at 35.2 T with ¹H decoupling
- K+ occupying both cation binding sites

Both sites are part of the cation binding site

$^{17}\mathrm{O}~\mathrm{Gly}_2$ gA without and with Single and Double K+ Occupancy

- Without cations the water dipole is intact from one side of the bilayer to the other.
- With single occupancy the water dipole is also stable.
- With double occupancy the water dipole is split inducing water flips near the gA-gA junction causing additional averaging.
- Importantly there is still the same number of waters.

Unique Chemistry Discovered by Ultra-High Field NMR:

- How waters have unique interactions with gA breaking the dimeric symmetry
- How cations support that role and interfere with it as a function of concentration
- How ¹⁷O spectroscopy at high fields can provide unique insights into biological function

SCH NMR Users – so far in 2018

Nathaniel Traaseth – OS ssNMR EmrE membrane protein in bicelles - 1/18 Gang Wu - ¹⁷O MAS ssNMR of organic solids - 6/18 Rob Schurko – ¹H-¹⁰³Rh MAS ssNMR of catalysts and model compounds - 4/18 Alex Nevzorov – OS ssNMR of Pf1 coat protein in bicelles - 1/18 Len Mueller – 17O MAS ssNMR of Tryptophan synthase Rachel Martin – MAS ssNMR of Droserasin – 4 & 9/18 Francessca Marassi – OS ssNMR of Y. pestis Ail - 1/18 Daniel Lee – MAS ssNMR metal oxide nanocrystals Danielle Laurencin - MAS ssNMR of biomaterials - 4/18 Oliver Lafon -⁷¹Ga ssNMR of Ga2Se3 - 4 & 7/18 Hans Jakobsen – 95 Mo ssNMR of tetraoxoanions – 2/18 Yining Huang $-^{17}$ O ssNMR of metal organic frameworks – 4 & 5/18 Sophia Hayes -2^{5} Mg of metal oxide thin films -4/18Oc Hee Hahn – ⁷⁹Br and ⁸¹Br NMR of Perovskite crystals - 2/18 Robert Griffin – 17 O labeled water in amyloid forming peptide – 4 & 9/18 Cecil Dybowski – 67 Zn of ZnO-based pigments in paint films – 1 & 3/18 Myriam Cotten – OS ssNMR of metallopeptides bound to membrane surface - 3/18 Brad Chmelka – ²³Na, ²⁷Al, ³⁵Cl, ³⁹K, ⁷¹Ga, ⁹⁵Mo, and ¹¹⁵In in nanostructured solids - 6/18 Ed Chekmenev – ¹⁷O gramicidin OS ssNMR (fill-in spectroscopy) David Bryce – Quadrupolar spectroscopy of various organics and inorganics - 2/18

Conclusions:

- High Fields are going to be great
- There are the obvious advantages of dispersion, sensitivity, etc.
- Opening the periodic table by integrating many quadrupolar spectroscopy into our repertoire to solve important chemical questions
- The sensitivity of ¹⁷O for characterizing the chemistry – not only for protein and nucleic acid studies, but for interactions with the macromolecular solubilizing environment.
- More spin ½ spectroscopy will be performed as the SCH magnet & spectrometer performance improves, but the focus will be on quadrupoles
- High Temperature Superconducting Materials and magnets are on their way – Mark Bird's talk.

32T All superconducting Magnet reached full field December, 2017: 17T HTS component & 15T LTS component -Will be installed in our High B/T User Program 1/2019 at the NHMFL.

