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SCH Operational Experience 

• SCH Operations 
- ramp up & ramp down time: ~ 30 min each

- set up activities on Monday – often 2-3 hours of magnet time available in late 
afternoon  

- Tuesday through Friday 
- ramp up at 6:00 AM – science staff must be in cell by 5:45 AM

- ramp down at ~3:30 PM 

- magnet trips from field on average twice a week, sometime twice in a day 
– costing 1.5 hours 

- magnet needs to be ramped down to mid field to change samples if no ferro
shims used. If ferro shims used ramp down to zero field to change 

samples.

- typically 5-7 hours at field per day. 

- Good week is 24-30 hours at field



SCH 2018 Operations 

• SCH Operations 
- 2018 Schedule: the 52 weeks

7 weeks scheduled for deep maintenance – no ops
5 weeks for additional maintenance
1 week for Christmas
8 weeks scheduled for CMP
31 weeks scheduled for NMR

- 4 weeks lost to emergency maintenance
- 2 weeks were lost as individual days for infrastructure

- Operations at field during a good week 
~ 2 hours: Monday
~ 5-7 hours: Tuesday – Friday
~ 26 hour of SCH NMR Operations for a average good week
650 hours at field for the year (31-6 weeks) x 26) – assuming no additional lost 

weeks – we will be close to this number.
650 hours is equivalent to less than 1 month of time on a supercon magnet. 



SCH Operational Costs are Considerable 

• SCH DC Power
- 14 MWatts to power the magnet 
- additional MWatts to run the chillers and pumps to cool the magnet
- $17,000 for a week of SCH time

• Operational Staff for the power supplies, chillers, cryogenic system, 
- Operational Staff for the cryogenic system
- a minimum of 3 personnel – fortunately shared with a second magnet during 

regular weekly operations

• Scientists/Engineers
- A minimum of 2 

- more typically an average of 3 
- in the future this maybe more typically 2

- The engineering effort away from SCH magnet continues in the the RF group 

• Power is approximately half of the operating cost

• Consequently, each hour is valuable and a great deal of thought and planning must go 
into each day of operation



1H → 13C INEPT of PSI in lipids 

line widths: 0.4 ppm for both dimensions
Data acquired in SCH at 1.5 GHz 

1H RF – 100 kHz
13C RF – DARR 80kHz/ INEPT 50 kHz

1h 8 min 

Total acq

Droserasin 1 Plant Specific-Insert in Lipids

2h total acq

Rachel Martin,  UC Irvine  - shown with permission



• Enhanced Sensitivity in the DARR spectrum
• linewidths of 0.4 ppm in GB1
• 60 Hz is the primary current limitation 

Initial 13C MAS Spectra in 2.0 mm MAS Triple Res Probe 

Zhehong Gan, Ivan Hung, 
Xiaoling Wang

24.4 kHz 2.0 mm MAS HXY 
Probe: 2 scans /t1 increment
91 min total acquisition



13C Chemical Shift

GB1 250 ms DARR 1.5 GHz Cascade Field Regulation    



GB1 1H-15N HETCOR 1.5 GHz Using 

Cascade Field Regulation (red)

Bruker Lock (Blue)   

Slice through 
7.5 ppm

15N Chemical Shift

15N Chemical 
Shift

1H Chemical 
Shift



Blue: Bruker’s Lock 
Red: Schiano’s CFRS

GB1 2D 13C-
15N Spectrum

13C Chemical Shift
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15N Chemical Shift

Prof. Jeff Schiano, Ilya Litvak, Bill 

Brey et al.,: Development of a Cascade 

Field Regulation System for 35 T NMR 

Spectroscopy

Slice through 57.85 ppm 

CFRS Spectrum 
shifted 0.4 ppm in 
the 13C dimension



EmrE – Nate Traseeth NYU – shown with permission 

Pisema 38 t1 pts
Sampi4 48 t1 pts

EmrE Aligned in Bicelles at 33°C



Chemical Shift Dimension comparison EmrE

EmrE – Nate Traseeth NYU
with permission

Sample is smaller

Blue: Pisema 900 MHz 128 scans/increment

Red: Sampi4 1.5 GHz 88scans/increment with

smaller sample



Series Connected Hybrid 

Magnet – MAS Spectra of 

Uniform 13C, 15N and 

70% 17O N-Acetyl Val-Leu

in 2.0 mm MAS HXY 

Probe

Keeler et al., (2017) JACS 139, 17953 

2D 13C-17O Spectra at 21T in a 
supercon Magnet - soon to be 
implemented at 35.2 T

• 2D 17O Triple Quantum MAS spectra 
at 35.2T and 19kHz spin rate.

• Quadrupolar interaction is not 
completely eliminated by MAS

• Signal averaging time is reduced by a 
factor of ~10 compared to 21 T



Gramicidin A – The First All-Atom

Transmembrane Structure to be 

Characterized in a Liquid Crystalline 

Lipid Bilayer Environment 

Ketchem et al., Science 1993; Ketchem et al., Structure, 1997

• An alternating sequence of L and D amino acids
Forming a b-strand with all sidechains on one side 
forcing a helical structure
• All of the spectroscopy suggests a symmetric dimer

PDB 
1mag



Enhanced Alignment of Gly2, Ala3
15N Labeled Gramicidin A in 

Liquid Crystalline Lipid Bilayers – Oriented Sample ssNMR: 

Gan et al., (2017) JMR 284:125-136

PISEMA Spectra

At 35.2 Tesla 

Time averaged 

Symmetric 

Dimer to within 

a Fraction of a 

Degree



Leu10
17O Gramicidin A Aligned Parallel to DMPC Bilayer Normal 

and to Bo: OS ssNMR

No ions

Motionally averaged 

Anisotropy for Leu10

carbonyl 17O 

Natural Abundance 17O

Water 

Eduard Chekmenev 17O Chemical Shift 



Leu10
17O Gramicidin A Aligned Parallel to DMPC Bilayer Normal: 

OS ssNMR

Joana Paulino, 
Eduard Chekmenev

No ions

35.2 Tesla

19.4 Tesla

17O Chemical Shift 

Natural Abundance 17O

Water 



Leu10
17O Gramicidin A Aligned Parallel to DMPC Bilayer Normal: 

OS ssNMR

Joana Paulino, 
Eduard Chekmenev

No ions

35.2 Tesla

19.4 Tesla

17O Chemical Shift 

35.2 Tesla
w/ 1H Decoupling

Natural Abundance 17O

Water 
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17O Gramicidin A Aligned in Liquid Crystalline Lipid Bilayers: 

OS ssNMR
17O Leu12

17O Leu10

17O Leu4

17O Gly2

17O Chemical Shift
15N Chemical

Shift

15N Ala3

II I_

Keep this 
in mind

Same peptide 

plane



Gramicidin High Resolution Structure, 1MAG

Distribution 

of Carbonyl

Oxygen 

Atoms 

in the

Symmetric 

Gramicidin 

A Dimer
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Transmembrane Position (Å)                

Distribution of 
Carbonyl oxygen 
sites based on 
an MD 
simulation in the 
pore – very 
stable structure 
– very symmetric



Waters in the Gramicidin Pore • Gramicidin A - Single File Column of Water 

Molecules modeled by MD

•  7 or 8 Ordered Waters Molecules form 

Electric Dipole Moment 

• According to MD Simulations: Water Wire 

Reorients on the sub-ns Timescale

• ssNMR resonances shows stability on 

sub-ms Timescale – 6 orders of 

magnitude difference

• Is it the electric dipole of the water wire that 

induces 4.0 kHz shift?
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Statistical

Distribution 

of Water 

Atoms

Based on

MD 

Water

Oxygens

Both

Water

Hydrogens

Increasing probability →

Gramicidin A 
1MAG 

26 Carbonyl 

Oxygens vs. 7 

or 8 Waters
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Selective Hydrogen Bonding Explains the Different 

Chemical Shifts 

Gramicidin A 
1MAG 

Gly2
Carbonyl
Oxygen –
Water 
H-bond

Gly2
Carbonyl
Oxygen
No H-bnd

• Same MD Snapshot in 
two orientations 
showing one Gly2 
carbonyl with an H-bond 
and the other without 
an H-bond



17O Gramicidin A with Double Occupancy K+

17O Leu12 gA

17O Leu10 gA

17O Leu4 gA

17O Gly2 gA

Both sites 

are part of 

the cation

binding site

Leu4 is far 

from the 

binding site 

??? 

Without K+

With K+

• All data obtained at 35.2 T 

with 1H decoupling

• K+ occupying both cation

binding sites

L10

L12
L14



17O Gly2 gA without and with Single and Double K+ Occupancy

80% Double 
Occupancy
2.4 M 

Single Occupancy
0.07 M KCl

‘No’ Cations
~0.01 M KCl

• Without cations the water dipole is intact from 

one side of the bilayer to the other.

• With single occupancy the water dipole is also 

stable.

• With double occupancy 

the water dipole is split 

inducing water flips 

near the gA-gA junction

causing additional 

averaging.

• Importantly there is

still the same number

of waters.

L10

L12
L14



Joana Paulino, 
Eduard Chekmenev

No ions35.2 Tesla

19.4 Tesla

17O Chemical Shift 

35.2 Tesla
w/ 1H Decoupling

Natural Abundance 17O

Water 

Unique Chemistry Discovered by Ultra-High Field NMR: 

• How waters have unique interactions with gA breaking the dimeric symmetry

• How cations support that role and interfere with it as a function of concentration

• How 17O spectroscopy at high fields can provide unique insights into biological 

function



SCH NMR Users – so far in 2018 

Nathaniel Traaseth – OS ssNMR EmrE membrane protein in bicelles - 1/18
Gang Wu – 17O MAS ssNMR of organic solids - 6/18
Rob Schurko – 1H-103Rh MAS ssNMR of catalysts and model compounds - 4/18
Alex Nevzorov – OS ssNMR of Pf1 coat protein in bicelles - 1/18
Len Mueller – 17O MAS ssNMR of Tryptophan synthase 
Rachel Martin – MAS ssNMR of Droserasin – 4 & 9/18
Francessca Marassi – OS ssNMR of Y. pestis Ail - 1/18
Daniel Lee – MAS ssNMR metal oxide nanocrystals
Danielle Laurencin - MAS ssNMR of biomaterials - 4/18
Oliver Lafon – 71Ga ssNMR of Ga2Se3  - 4 & 7/18
Hans Jakobsen – 95Mo ssNMR of tetraoxoanions – 2/18
Yining Huang  -17O  ssNMR of metal organic frameworks – 4 & 5/18
Sophia Hayes – 25Mg of metal oxide thin films - 4/18
Oc Hee Hahn – 79Br and 81Br NMR of Perovskite crystals - 2/18
Robert Griffin – 17O labeled water in amyloid forming peptide – 4 & 9/18
Cecil Dybowski – 67Zn of ZnO-based pigments in paint films – 1 & 3/18
Myriam Cotten – OS ssNMR of metallopeptides bound to membrane surface - 3/18
Brad Chmelka – 23Na, 27Al, 35Cl, 39K, 71Ga, 95Mo, and 115In in nanostructured solids - 6/18
Ed Chekmenev – 17O gramicidin  OS ssNMR (fill-in spectroscopy)
David Bryce – Quadrupolar spectroscopy of various organics and inorganics - 2/18



Conclusions:

• High Fields are going to be great   

• There are the obvious advantages of dispersion, 
sensitivity, etc.

• Opening the periodic table by integrating many
quadrupolar spectroscopy into our repertoire to 
solve important chemical questions

• The sensitivity of 17O for characterizing the 
chemistry – not only for protein and nucleic acid 
studies, but for interactions with the 
macromolecular solubilizing environment.

• More spin ½ spectroscopy will be performed as the 
SCH magnet & spectrometer performance 
improves, but the focus will be on quadrupoles

• High Temperature Superconducting 
Materials and magnets are on their way –
Mark Bird’s talk.

32T All superconducting 
Magnet reached full 
field December, 2017: 
17T HTS component & 
15T LTS component -
Will be installed in our 
High B/T User Program 
1/2019 at the NHMFL.


