Metabolomics and Metabolic Flux

Matthew Merritt

Department of Biochemistry and Molecular Biology Room R3-226B, Academic Research Building matthewmerritt@ufl.edu

Structure

Structure/FUNCTION

Metabolomics vs Fluxomics

Pool Sizes

The "Omics" Revolution

Davis, V. W.; Bathe, O. F.; et.al. Metabolomics and surgical oncology: Potential role for small molecule biomarkers. *J. Surg. Oncol.* **2011**, *103*, 451-459. Worley, B.; Powers, R. Multivariate analysis in metabolomics. *Curr. Metabolomics* **2013**, *1*, 92-107.

Sample Collection

- Trivial amount of blood is drawn
- Blood spots on paper are extremely stable!
- This is the PKU test (phenylketonuria) that has been common in US since 1964
- PKU arises when the enzyme catalyzing conversion of phenylalanine to tyrosine is not expressed properly

PKU treated versus untreated

- The first success story
 Both children have PKU
 - One was born before test
 - The girl immediately went to phenylalanine free diet

Metabolomics Definition

- Study of the metabolites present within a living system
- Implication that it is some sort of high throughput screening
 - Want to be able to study a population
 - What is normal? What is pathophysiological?
- The "metabolome" changes every time a new technique is used or the sensitivity increases
 - Started out with ~200 compounds
 - Now the number is ~20000, but really could be significantly larger if lipids are considered

A Metabolic Survey that Changes How We Think About Diabetes

A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

Christopher B. Newgard,^{1,2,3,*} Jie An,^{1,3} James R. Bain,¹ Michael J. Muehlbauer,¹ Robert D. Stevens,¹ Lillian F. Lien,^{1,2} Andrea M. Haqq,^{1,4} Svati H. Shah,² Michelle Arlotto,¹ Cris A. Slentz,² James Rochon,⁶ Dianne Gallup,⁶ Olga Ilkayeva,¹ Brett R. Wenner,¹ William S. Yancy, Jr.,² Howard Eisenson,⁶ Gerald Musante,² Richard S. Surwit,⁷ David S. Millington,^{1,4} Mark D. Butler,¹ and Laura P. Svetkey^{1,2}

- Comprehensive metabolic profile on 74 obese and 67 lean subjects
- This is a survey: what can we see?

A Metabolic Survey that Changes How We Think About Diabetes

- HOMA is a measure of insulin sensitivity
 - A lower score means you are insulin sensitive (lowers blood glucose)
- Principal components analysis combines multiple variables into a single quantity that captures the maximum variance

Note the scatter in the obese subjects; BCAAs (valine, leucine, isoleucine) were primary members of the principal component

Human Observations Guided a Series of Rat Based Studies

- Control, high fat, and BCAA supplemented diets
- BCAAs cause insulin

Rapamycin inhibits the putative target of the BCAA activation

A Metabolic Survey that Changes How We Think About Diabetes

- Global profiling of humans led to an observation that had not even been suggested before
- Led to experiments with testable hypothesis
- LC/MS can be used in a large cohort of people

Targets for Study

- Collect samples correctly
 - Urine
 - Blood
 - Cerebrospinal Fluid
 - Tissue

Handling Urine Samples

- Remove particulates with centrifugation
 protein can be eliminated in urine
- pH can vary- for Nuclear Magnetic Resonance this can change peak locations and cause unnecessary scatter in the data
- Salts can vary- big issue for LC/MS (ionization efficiency)
- If stored for any significant period it must be in a -80 °C fridge
 - stop metabolism

Handling Blood Samples

- Remove red blood cells by centrifugation

 RBCs are highly metabolic
- Decision- which metabolites am I interested in?
 - Water soluble
 - Organic soluble
- Folch extraction Chloroform/Methanol

 Lipids in organic phase
 Water soluble in methanol

 Perchloric acid Water soluble only

Blood derived samples

- Plasma- blood without the RBCs
- Serum- plasma that has removed clotting factors (the protein fibrinogen primarily)

Extraction Artifacts

- Chloroform/methanol extraction does not capture water soluble compounds as effectively as perchloric acid
- Even across amino acids, perchloric acid extracts capture various amounts

Prior to any instrumental issues, sample handling plays a large, essential, crucial part in the metabolic profile measured

Tissue Samples

- By definition there will be fewer samples
- Immediately arrest metabolism
 - Drop in liquid N₂
 - Preferably Freeze Clamp
 - Store at -80 °C at least, preferably at LN₂ temperature
- Your choice of extraction methods

Choose a Research Platform

- Liquid chromatography –Mass spectrometry
- NMR

Increased Power of Hyphenated Methods

- LC separates on polarity (solubility between phases) of the analytes
- MS measures the mass/charge
- The combination provides the tremendous resolution needed to sort out ~20000 compounds

LC/MS vs NMR

- NMR depends upon sensitivity and chemical shift resolution (limits to ~100 compounds)
 - Higher field
 - Cryoprobes
 - Quantitative in most circumstances
- LC/MS
 - Very sensitive
 - Matrix effects are strong
 - Must add an isotopic standard to quantitate

Measuring Metabolism with Nuclear Magnetic Resonance (NMR)

Magnetic Resonance

Human Imager (3T)

Why Magnetic Resonance?

- 1) Nuclei detection is frequency dependent
- 2) Chemical shift
- 3) Spin-spin coupling
- 4) Potential for in vivo studies

The NMR Spectrometer

	Nucleus	Spin	Natural abundance	Rel . NMR sensitivity	
	¹ H	1/2	99.9%	100	
	³¹ P	1/2	100%	16	
La da	¹³ C	1/2	1.1%	2	
	² H	1	0.015%	10	
AS600	¹⁵ N	1/2	0.34%	0.2	
	$\frac{\alpha}{\beta} = e$ Only 1 Carbon	-ΔE	/kT = '	1- γhΒ	o/kT
	in 100,000 i visible	S		¹³ C 1 X	10 ⁻⁵

Larmor Frequency of Common Nuclei at 14T

Nucleus	Frequency
¹ H	600 MHz
³¹ P	243 MHz
¹³ C	151 MHz
² H	92 MHz
¹⁵ N	61 MHz

The Resonance of an NMR Signal Depends on The Chemical Environment of the Nuclei

The Resonance of an NMR Signal Depends on The Chemical Environment of the Nuclei

The Resonance of an NMR Signal Depends on The Chemical Environment of the Nuclei

Key Point:

NMR Chemical Shift allows simultaneous assessment of enrichment in all positions of a metabolite

Spin Coupling (j-coupling) (spin=1/2)

Hydrogens have the largest magnetic moment of possible nuclei and a high natural abundance

- ¹H NMR meets requisites for metabolomics technique
- Sensitivity is less than LC/MS methods

¹H NMR Spectra

- Chemical shifts and jcouplings lead to complicated spectra
- Many resonances are correlated

Single Molecule has Multiple Resonances

Origin of Multiple Signals/Resonance Frequency

- Note the methyl group has a single hydrogen neighbor (n+1)
- The single hydrogen has three neighbors (n+1)

Assignment Issues

- Multiple overlapping resonances leads to difficulties in compound assignment
- Most straightforward approach is to quantify the individual metabolites
- For screening, the practice of binning was introduced

Binning

 Add up amplitude across the binned areas to produce reduced spectra

Data Reduction

Not your grandmother's statistics

Many More Variables Than Samples

- Typical biologically based experiments involve a small number of tests (blood glucose, triglycerides, cholesterol) across many subjects
- LC/MS and NMR can generate thousands of variables, and it is often not practical to run on very many subjects

Estimating Error Using a Gaussian Probability

 If we assume a Gaussian probability for a series of measurements, it has the form:

 $y = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$ where σ is the standard deviation and μ is the average value

The Null Hypothesis

- The null hypothesis, H₀, is that there is not a significant difference between two sample populations
- When we sample the Gaussian we get a sample mean, x̄, and a sample standard deviation, s, that is calculated from data

Confidence Intervals

- A confidence interval uses Student's t-test to assess the likelihood that an average, x
 ₁, is not the same as the second average, x
 ₂.
- Usually a p-value is reported that gives the probability that two sets of samples are not drawn from distributions that have the same averages
- A 95% confidence interval means that you will randomly get a positive result 1 in every 20 measurements

Statistics (Type I and Type II Error)

- Type I error is detecting an effect that is not present
- Type II error is failing to detect an effect that is present

Using Students t-test 1000 times can generate a lot of type I errors

- 20 variables
- 3 "measures"
- Generated a set of Gaussian distributed numbers with average =0 and sigma=1

Example of Variable Bin Size

- The same set of proton NMR data was binned at .001 ppm vs .05 ppm
- Data was analyzed with the metaboanalyst pipeline

Overlay of ¹H NMR spectra for 70 samples

6.0 5.5 7.5 8.5 7.0 6.5 3.5 3.0 2.5 2.0 1.5 8.0 4.0 f1 (ppm)

Assignments for Urine sample

Parameters applied in Mestrenova and Metaboanalyst3.0 for the spectra of 70 samples

- All spectra were phase and baseline corrected
- Downfield region (>9.5ppm), upfield region (<0.5 ppm), Urea and water area were removed
- Normalization: probabilistic quotient normalization (PQN)
- Binned: 0.001 ppm
- Locally aligned: 162 regions
- Autoscaling (mean-centered and divided by s.d.
- CSV file was extracted and used in Mataboanalyst analysis

Normalization

- Sample normalization allows general-purpose adjustment for differences among samples
- Performed by probabilistic quotient normalization (PQN)

One Way Analysis of Variance (ANOVA)

- Comparison column shows the comparisons between different levels that are significant given the p value threshold (dashed line with p=0.05).
- Red points indicates the most significant levels and subject of interests
- 2619 chemical shifts differed significantly among the different groups

Spectra Bins

Top **50** features identified by One-way ANOVA

	2.683 2
 Metabolites = Spectra Bins (ppm) 	1.493 2
	2.285 2
	3.887 2
 Top 50 features identified by 	2.684 2
	2.284 2
UHE-WAY ANOVA	6.277 2

Can be considered significant

Spectra Bins			Spectra Bins		
(ppm)	f.value	p.value	(ppm)	f.value	p.value
2.683	28.853	4.90E-12	2.294	22.361	4.20E-10
1.493	28.636	5.63E-12	2.516	22.354	4.22E-10
2.285	26.803	1.87E-11	6.29	22.277	4.46E-10
3.887	26.363	2.52E-11	4.007	22.264	4.51E-10
2.684	25.952	3.33E-11	7.404	22.103	5.08E-10
2.284	25.874	3.51E-11	3.546	22.037	5.33E-10
6.277	25.702	3.94E-11	1.382	22.006	5.45E-10
2.172	25.316	5.14E-11	1.496	21.991	5.51E-10
4.115	24.868	7.01E-11	1.487	21.974	5.58E-10
1.492	24.758	7.56E-11	2.168	21.914	5.83E-10
4.114	24.756	7.57E-11	3.699	21.709	6.79E-10
1.489	24.202	1.12E-10	3.785	21.688	6.90E-10
2.685	23.696	1.60E-10	1.485	21.671	6.99E-10
1.49	23.604	1.71E-10	2.66	21.623	7.24E-10
6.291	23.577	1.74E-10	1.486	21.602	7.36E-10
2.682	23.158	2.35E-10	2.173	21.548	7.66E-10
2.542	23.13	2.40E-10	3.995	21.443	8.29E-10
1.488	23.118	2.42E-10	1.727	21.392	8.61E-10
1.728	23.05	2.54E-10	1.73	21.372	8.74F-10
1.491	23.017	2.60E-10	1.495	21.221	9.79F-10
2.273	22.977	2.68E-10	2.286	21.185	1.01F-09
2.298	22.95	2.73E-10	3 996	20.899	1 25F-09
0.764	22.789	3.07E-10	4 028	20.83	1 31F-09
1.494	22.757	3.14E-10		20.05	1 35F-09
1.729	22.66	3.37E-10	2.037	20.751	1.550 05

Corresponding metabolites for top 50 chemical shifts obtained from ANOVA

Spectra Bins(ppm)	Corresponding compounds	Spectra Bins(ppm)	Corresponding compounds
2.683	Citrate	2.294	2-Aminoadipate
1.493	Pimelate	2.516	Citrate
2.285	2-Aminoadipate	6.29	dCTP
3.887	Glucose	4.007	Phenylalanine
2.684	Citrate	7.404	Phenylalanine
2.284	2-Aminoadipate	3.546	Glucose
6.277	2-Deoxyuridine/Thymidine?	1.382	2-Octenoate??
2.172	Glutarate	1.496	Pimelate
4.115	Lactate	1.487	Pimelate
1.492	Pimelate	2 168	Glutarate
4.114	Lactate	2.100	Glucosa
1.489	Pimelate	3.055	Glucose
2.685	Citrate	3.785	Glucose
1.49	Pimelate	1.485	Pimelate
6.291	2-Deoxyuridine/Thymidine?	2.66	Citrate
2.682	Citrate	1.486	Pimelate
2.542	Citrate	2.173	Glutarate
1.488	Pimelate	3.995	Phenylalanine
1.728	Glutarate	1.727	Glutarate
1.491	Pimelate	1.73	Glutarate
2.273	2-Aminoadipate	1.495	Pimelate
2.298	2-Aminoadipate	2 286	2-Aminoadinate
0.764	Unknown	2.200	Phonylalanino
1.494	Pimelate	5.990	Phenylalanine
1.729	Glutarate	4.028	Phenylalanine
		2.657	Citrate

PCA analysis

- Statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components
- Unsupervised method
- The explained variance of each PC is shown in the corresponding diagonal cell
- Pairwise score plots providing an overview of the various separation patterns among the most significant PCs
- Components 1 and 2 explained 31.3% of the total variance among the groups

Scores plot (two and three-dimensional)

- Scores plot between PC1 vs PC2
- Explained variances are shown in brackets
- Not much separation among the groups

Partial Least Squares - Discriminant Analysis (PLS-DA)

- Supervised method
- Uses multivariate regression techniques to extract via linear combination of original variables (X) the information that can predict the class membership (Y)
- PLS-DA "rotates" the PCA axes to maximize separation
- Figure shows pairwise scores plots between the selected components
- The explained variance of each component is shown in the corresponding diagonal cell.
- Component 1 and 2 explained 27.5% of the total variance among the groups

A Michelle_KO_AM
+ Michelle_KO_PM
× Michelle WT AM

Michelle WT PM

Scores plot obtained from PLS-DA (two and three-dimensional)

- Scores plot between the selected PCs
- The explained variances are shown in brackets
- Four clusters show some separation

Evaluation of PLS-DA Model for urine samples

- PLS-DA Model evaluated by cross validation of Q² and R²
 - *R*² provides a measure of model fit to the original data
 - Q² provides an internal measure of consistency between the original and crossvalidation predicted data
- Using too many components can overfit
- Q² > 0.4 for an acceptable model
- R² >> Q² possible indicator of model over-fitting
- $R^2/Q^2 > 0.5$: Acceptable model
- Since R² is slightly larger than Q² and not >> Q², there is a less chance of model over-fitting

PLS-DA cross validation details:

Measure	1 comps	2 comps	3 comps	4 comps	5 comps
Accuracy	0.45833	0.61111	0.71875	0.70486	0.69097
R2	0.52341	0.6813	0.78632	0.86473	0.90455
Q2	0.45661	0.50643	0.50266	0.47418	0.47477

Model validation for urine samples

- PLS-DA model validation by permutation tests based on separation distance
- Performed with 10-fold CV and 100 permutation points
- The p value based on permutation is p = 0.01, the classifier is powerful

VIP scores

- VIP score is a measure of a variable's importance in the PLS-DA model
- Important features identified by PLS-DA
- The numbers on y-axis represents the chemical shifts in ppm

Pimelate Citrate Pimelate Pimelate Pimelate Citrate Pimelate Pimelate Citrate Citrate Pimelate Citrate Pimelate Pimelate Citrate

- No peaks for Pimelate visible in COSY
- Chenomx suggest peaks @~1.49 ppm either could belongs to Pimelate
- Correlation table suggest peaks @~1.49 ppm could belongs to Pimelate with correlation factor ≥ 0.54 for the peaks 1.49 ppm, 0.9 ppm and 1.33 ppm.
- Most probable compound is pimelate since it involved in the biosynthesis of lysine, while valerate (another possible compound) is found naturally in the perennial flowering plant valerian.

Overlay of ¹H NMR spectra for 70 samples

Assignments for Urine sample

Parameters applied in Mestrenova and Metaboanalyst3.0 for the spectra of 70 samples

- All spectra were phase and baseline corrected
- Downfield region (>9.5ppm), upfield region (<0.5 ppm), Urea and water area were removed
- Normalization: probabilistic quotient normalization (PQN)
- Binned: 0.05 ppm
- Locally aligned: 162 regions
- Autoscaling
- CSV file was extracted and used in Mataboanalyst analysis

Normalization

- Sample normalization allows general-purpose adjustment for differences among samples
- Performed by probabilistic quotient normalization (PQN)

One Way Analysis of Variance (ANOVA)

- Comparison column shows the comparisons between different levels that are significant given the p value threshold (dashed line with p=0.05).
- Red points indicates the most significant levels and subject of interests
- 43 chemical shifts differed significantly among the different groups

All 43 features identified by One-way ANOVA

	0	Metabolites	= Spectra	Bins	(ppm
--	---	-------------	-----------	------	------

- Top 50 features identified by One-way ANOVA
- Can be considered significant

Spectra Bins			Spectra Bins		
(ppm)	f.value	p.value	(ppm)	f.value	p.value
0.759403	20.767	1.38E-09	6.55296	5.4457	0.002087
7.45196	19.175	4.73E-09	8.35096	5.3843	0.002238
7.40201	16.417	4.48E-08	0.559625	5.1886	0.002799
7.70168	15.998	6.38E-08	8.20113	5.188	0.002801
7.35207	13.239	7.29E-07	6.45307	5.1405	0.002958
7.30213	10.668	8.32E-06	6.65285	5.0119	0.003429
1.25885	10.465	1.02E-05	3.9059	4.943	0.003713
2.40757	10.344	1.14E-05	4.00579	4.6632	0.005133
6.00357	9.3941	2.97E-05	7.5019	4.4879	0.006295
2.5574	8.4905	7.54E-05	3.50635	4.4592	0.006509
1.2089	8.1115	0.000112	7.90146	4.3508	0.007389
7.9514	7.7731	0.000161	2.65729	4.1539	0.009309
8.25107	7.29	0.00027	2.35763	4.0578	0.010424
3.95585	7.0134	0.000364	8.00135	4.0097	0.011032
3.55629	6.9419	0.000394	1.90813	4.0064	0.011075
3.85596	6.934	0.000397	9.2999	3.9932	0.011249
3.70613	6.7122	0.000506	2.15785	3.8934	0.012656
2.45751	6.6603	0.000536	6.10346	3.8561	0.013228
6.30324	6.3564	0.00075	6.55296	5.4457	0.002087
2.30768	6.2662	0.000829	8.35096	5.3843	0.002238
3.75607	6.1041	0.000993	0.559625	5.1886	0.002799
1.85818	5.8423	0.001332	8.20113	5.188	0.002801
8.30101	5.8345	0.001344	6.45307	5.1405	0.002958
3.60624	5.644	0.001666	6.65285	5.0119	0.003429
1.40868	5.5138	0.001932			

PCA analysis

- Statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components
- Unsupervised method
- The explained variance of each PC is shown in the corresponding diagonal cell
- Pairwise score plots providing an overview of the various separation patterns among the most significant PCs
- Components 1 and 2 explained 47.1% of the total variance among the groups

Scores plot (two and three-dimensional)

- Scores plot between PC1 vs PC2
- Explained variances are shown in brackets
- Not much separation among the groups

Partial Least Squares - Discriminant Analysis (PLS-DA)

- Supervised method
- Uses multivariate regression techniques to extract via linear combination of original variables (X) the information that can predict the class membership (Y)
- PLS-DA "rotates" the PCA axes to maximize separation
- Figure shows pairwise scores plots between the selected components
- The explained variance of each component is shown in the corresponding diagonal cell.
- Component 1 and 2 explained 44.8% of the total variance among the groups

△ Michelle_KO_AM
 + Michelle_KO_PM
 × Michelle_WT_AM
 ◊ Michelle_WT_PM

Scores plot obtained from PLS-DA (two and three-dimensional)

- Scores plot between the selected PCs
- The explained variances are shown in brackets
- Four clusters show not great separation

3-D

2-D

Evaluation of PLS-DA Model for urine samples

- PLS-DA Model evaluated by cross validation of Q² and R²
 - *R*² provides a measure of model fit to the original data
 - Q² provides an internal measure of consistency between the original and crossvalidation predicted data
- Using too many components can overfit
- $Q^2 > 0.4$ for an acceptable model
- R² >> Q² possible indicator of model over-fitting
- $R^2/Q^2 > 0.5$: Acceptable model
- Since R² is slightly larger than Q² and not >> Q², there is a less chance of model over-fitting

PLS-DA cross validation details:

Measure	1 comps	2 comps	3 comps	4 comps	5 comps
Accuracy	0.38	0.53	0.58333	0.65667	0.62
R2	0.48639	0.53492	0.65527	0.70858	0.77417
Q2	0.37411	0.425	0.43503	0.39493	0.21958

Model validation for urine samples

- PLS-DA model validation by permutation tests based on separation distance
- Performed with 10-fold CV and 100 permutation points
- The p value based on permutation is p = 0.08, the classifier is not powerful

VIP scores

- VIP score is a measure of a variable's importance in the PLS-DA model
- Important features identified by PLS-DA
- The numbers on y-axis represents the chemical shifts in ppm

Think carefully about statistics: Then consult a statistician