

2018 UF Metabolomics Workshop: In-vivo NMR Spectroscopy

Dr. James Collins

Why In-vivo NMR Spectroscopy?

Why In-vivo NMR Spectroscopy?

• Example NMR spectra of rat brain tissue

Why In-vivo NMR Spectroscopy?

In-vivo spectroscopy trades resolution for relevance

Why Spatial Localization?

- Acquire data from a specific organ/ region of the subject
- Evolution does not optimize for NMR!
 - B₀ variations across an animal are large, typically we can achieve ~1 PPM linewidth.
 - Local B₀ variations are much smaller, and we can achieve < 0.1 PPM linewidths

Spatial Localization Strategies

Imaging

- Adapt MR Imaging methods to include spectral data
- Chemical Shift Imaging
 - Single Point Imaging
 - EPSI

Spectroscopy

- Use RF and field gradients to localize NMR spectra
- Localized Spectroscopy
 - PRESS, STEAM
 - LASER, semi-LASER
 - ISIS

- MmAl ~~

Spatial Localization Strategies

Imaging

- Slower
- Lower SNR
- Hard to shim well enough
- Larger area
- Higher spatial resolution

MM

- MM

MMA ~~~

Spectroscopy

- Lower spatial resolution
- Single arbitrary voxel
- Higher SNR
- Easier to shim
- Complex MT experiments

- MMAL ~~

Magnetic Field Gradients: Basics

- NMR has (ideally) a homogenous magnetic field such that the recorded frequencies correspond to Chemical Shift
- **MRI** deliberately alters the magnetic field such that frequency is now also dependent on **Spatial Position**

Slice Selective Excitations

No slice selection

Slice selection

Frequency dependent on position

Single Voxel Spectroscopy

• Localization requires a minimum of three RF pulses

PRESS

- Point REsolved Spectroscopic Sequence
- Double Spin Echo Sequence

STEAM

STimulated Echo Acquisition Mode

Minimum TE < 10 ms T₁ relaxation during TM

Stimulated echos produce only half maximum signal compared to a spin echo

$$\frac{M_Z}{M_0} = \frac{1}{2} e^{-(\frac{T_E}{T_2} + \frac{T_M}{T_1})}$$

Spoiler gradients to remove signal from imperfect pulses and unwanted coherences

Stimulated Echo

PRESS vs. STEAM: SNR

- In principle SNR for a given volume dependent on relaxation properties and sequence timings
- If $T_1 >> T_2$ and $T_2 \approx TE_{PRESS}$, then STEAM gives better SNR

• However there are other considerations....

Partial Excitation of Slices

Slice Signal Profile

- RF pulse shapes affect signal profile across slice, as well as unwanted excitation outside of slice selected regions
- For a given pulse shape, excitations (hence, STEAM) have a 'better' slice signal profile

- In a gaussian pulse the difference in SNR from one slice is approx. 30%
- The SNR difference due to partial slice excitation may cancel the ½ SNR penalty from the stimulated echo
- 'better' pulse shapes reduces the difference in signal profiles

Typical RF Pulse Shapes

- Pulses such as sinc3, and sinc7 give improved slice profiles, at the expensive of pulse length
- Shinar-LeRoux (SLR) pulses are often used, PV6 calculates them on the fly (default 'calculated' pulse), and give good slice excitation & refocusing performance
- Gaussian is less used, but has a few advantages. It is one of the shortest shaped pulses for a given power & bandwidth

Importance of Pulse Bandwidth

- To decrease voxel size, either increase gradient strength or decrease slice bandwidth
- Pulse bandwidth inversely proportional to pulse length for a given pulse shape
- Minimum pulse time (max bandwidth) dictated by the maximum RF power available
- RF bandwidth is proportional to the chemical shift offset...

Chemical Shift Offset

- Position of slice is dependent on frequency of excitation
- ¹³C example

$\Delta r_{Chemical Shift}$	$\Delta\omega_{Chemical Shift}$	
Δr_{slice}	$\Delta \omega_{slice}$	
$\frac{\Delta r_{Chemical Shift}}{15 mm} =$	$=\frac{600 \ Hz}{3000 \ Hz}$	
$\Delta r_{Chemical Shift} = 3 \text{ mm}$		

- Only 51% of coincident volume between
- High bandwidth r.f pulses reduce the issue

Chemical Shift Offset

- Position of slice is dependent on frequency of excitation
- ¹H example

$\Delta r_{Chemical Shift}$	$\Delta\omega_{Chemical Shift}$	
Δr_{slice} –	$\Delta \omega_{slice}$	
$\frac{\Delta r_{Chemical Shift}}{2} =$	$\frac{2550 Hz}{6000 Hz}$	
2 mm	6000 <i>Hz</i>	
$\Delta r_{Chemical Shift} = 0.85 \text{ mm}$		

- <20% of coincident volume</p>
- High bandwidth r.f pulses reduce the issue

Expectation vs. Reality

- Chemical shift offset is always present, worse at higher fields and for nuclei with large chemical shift ranges
- Can generate higher excitation bandwidths than refocusing ones, thus STEAM can reduce CSO compared to PRESS
- Not the sharply defined region we would like!

Outer Volume Suppression

- Localisation sequences are 'modular', allows the easy use of signal 'preconditioning' such as OVS and water suppression
- OVS suppresses signal from bands near the desired voxel

- Saturating a slice of the sample
- Simplest is a train of pulses

- Reduces signal from outside desired region....
- However, we compromise SNR and therefore quantitation of metabolites based on their chemical shift.

Water Suppression

- Water suppression is required, *in-vivo* approx. 40 M
- PV6 has CHESS and VAPOR as default
- Other derivatives include WET, SWAMP, MOIST
- Need to match suppression bandwidth to water linewidth
- Sequences can be further modified with intra-sequence WS, but PV6 doesn't as standard

Basic CHESS Sequence

MRIQuestions.com, © Elster LLC

STEAM vs. PRESS

- Which is 'better' ? $^{-}(\mathcal{V})_{-}$ it depends...
- PRESS is preferred at lower fields, STEAM at higher fields
- Many sequences based on these such as DRYSTEAM and MEGA-PRESS, which introduce spectral editing
- Can we do 'better'?

	STEAM	PRESS
Echo Time	Short (< 10ms)	Long (>30 ms)
CSO	ОК	Bad at high fields
SNR	Factor of ½ due to STE	OVS can affect it
Slice Profile	Excitations are better	SLR reduces difference
Flow Effects	Spoilers can cause issues	Usually better

LASER & SEMI-LASER

- Maybe....
- Paired adiabatic pulses help correct for phase dispersion across the slice that can occur with certain adiabatic pulses
- LASER excites whole sample, using refocusing to localise

Zhu H., & Barker, P.B., Methods Mol. Biol. 711, 203–226. (2011)

Adiabatic Pulses: SECH pulse

LASER & SEMI-LASER

- Better slice refocusing than PRESS
- Long echo time due to adiabatic pulses
- Relatively high bandwidth excitations reduce CSO issues
- High RF deposition, which is an issue for human subjects

Zhu H., & Barker, P.B., Methods Mol. Biol. 711, 203-226. (2011)

¹³C In-vivo Spectroscopy

- ¹³C is too low abundance to obtain good spectra
 - Inject labelled metabolites, such as ¹³C glucose
 - Use of slice selective excitation and OVS bands to select regions
 - Requires decoupling, and CSO artefacts are a major issues
 - Hyperpolarized metabolites such as ¹³C pyruvate
 - Typically done using CSI type image sequences including EPSI
 - Direct images of metabolites using bSSFP or Spectral-Spatial pulses

Cunningham CH et al., J. Mag. Res. Med., 187: 357-362 (2007)

Eichhorn T., et al., PNAS., 45, 18064-18069, (2013)

³¹P *In-vivo* Spectroscopy

- ³¹P spectra provide useful metabolic data
- Naturally 100% abundant spin-½ nuclei
 - ATP, NAD, PCr, and inorganic phosphates at >mM concentrations
- ATP T_2 is short, < 20 ms, and decrease with B_0
- Short echo time needed!

Chemical Shift (ppm)

ISIS

Image Selected In-vivo Spectroscopy

No Echo Time, as only FID's are acquired

No T₂ contrast

8 Step 'Phase cycle' to localize a voxel, hence 8 times slower than STEAM or PRESS

Minimize τ to reduce T_1 contrast

Motion during acquisition significantly affects the spectra

OVS Selected Region

- Another Potential method is to use multiple OVS bands to 'select' a localized region
- Rather than directly select the region of interest, we suppress all of the signal from outside this region
- Quicker than ISIS and also acquires an FID, hence no T₂ issues

³¹P Spectroscopy: pH Estimate

• pH of tissue is related to the chemical shift of the inorganic phosphate compared to phosphocreatine

Chemical Shift (ppm)

³¹P Spectroscopy: Magnetisation Transfer

- Saturating the γ-ATP resonance causes a change in signal intensity of the PCr peak (as well as in the other ATP peaks)
- The change in PCr signal is related to conversion rate of ATP to PCr
- Narrow bandwidth RF pulses used to saturate γ-ATP resonance

In-vivo measures of Cocaine effects

- Changes in spectra can be subtle, but statistically significant
- Data collected at 11.1 T

RF Coil Choices: Surface Coil

- Coil choice is important and can dictate sequence decisions:
 - Surface coils vs. volume coils

- Surface coils give better SNR at the expense of poor RF homogeneity. Adiabatic pulses help with this
- Provide some signal localization, as they have a limited RF range
- Practically they can be hard to tune accurately, can be susceptible to animal motion depended how they are mounted, and must be accurately placed on the animal

RF Coil Choice: Volume Coil

- Coil choice is important and can dictate sequence decisions:
 - Surface coils vs. volume coils

- Volume coils give much better RF homogeneity, but sacrifice SNR
- Can be paired with a heteronuclear surface coil relatively easily
- Usually can be tuned in situ, less coil positioning issues

RF Coil Choice: VT/SR

- Coil choice is important and can dictate sequence decisions:
 - Surface coils vs. volume coils

 Volume transmit/ Surface receive combines the higher SNR with the good RF performance, but require more complex coil designs and are harder to pair with heteronuclear coils.

Practical Aspects

- So far covered a lot of theory, but there are a number of practical aspects that need to be considered
- Animal cradle design:
 - Needs to keep animal still, and prevent motion from breathing
- Shimming is much harder *in-vivo*! Automatic shimming algorithms do exist.
 - PV6 uses a mapshim technique, that maps the B₀ field and then attempts to calculate the required shims. It works great... in a phantom.
 - Iterative local shimming of 1st order shims is also required
 - Manual shimming is harder in PV6 then previous versions or Varian systems, but can be done to a limited extent

Additional Slides

Phase and Frequency Encoding

 MR imaging uses a combination of 'Phase' and 'Frequency' (also called 'Read') encoding magnetic field gradients

Spectral-Spatial: K-t space

• How do we image spectral & spatial information?

Single Point Imaging: Basic CSI

• How do we image spectral & spatial information?

Image recorded in k-space

Spectra recorded in time domain

Phase Encoding

Frequency Encoding

Single Point Imaging

- Using a combination of 'Phase' and 'Frequency' (also called 'Read') is problematic for CSI
- The simplest method is perform Single Point Imaging, where both dimensions are phase encoded
- The time (frequency) dimension is then reserved for spectral information

Single Point Imaging

- Each point in k-space will require a separate acquisition
- Each voxel will have a full spectra associated with it
- A 64x64 image is thus 4096 acquisitions, with a fairly short acquisition time of 1 s, that is still > 1hr for a single average
- Many methods to speed up acquisition, but often at the expense of spectral quality

Echo Planar Spectroscopic Imaging

- EPSI is a modification of Echo Planar Imaging to give spectroscopic as well as spatial information
- A sequence of gradient echoes are recorded from a single excitation
- These are used to deconvolve **spectral** information

EPSI: Spectral/Spatial Compromise

- In EPSI the spectral sweepwidth is limited by the spatial resolution and field of view
- Increasing the sweepwidth requires either a bigger FOV or less points acquired in the frequency encoding direction
- On 11T we are using a sweepwidth of 2100 Hz (18 ppm)

UCSF EPSI Data

Data presented as spatially resolved spectra

32 averages

Hu S et al., J. Mag. Res. Imag., 31: 490-496 (2013)

Single Compound Images

- Instead of Spectral/Spatial images, directly image each metabolite in interleaved acquisitions
- balanced Steady State Free Precession

